Automated classification
insights into benefits, costs and lessons learned

Anders Ardö
Anders.Ardo@eit.lth.se
http://www.eit.lth.se/staff/anders.ardo

EIT – Electrical and Information Technology,
Lund University, Sweden

International UDC Seminar 2009:
Classification at a Crossroads
The Hague 29-30 October 2009
Information explosion
Why automated classification?

- Information explosion
 - Documents increasingly available electronically
Why automated classification?

- Information explosion
 - Documents increasingly available electronically
 - Lots of unstructured full-text documents on the Web
Why automated classification?

- Information explosion
 - Documents increasingly available electronically
 - Lots of unstructured full-text documents on the Web
- High cost of manual classification (1-2 / hour)
Why automated classification?

- Information explosion
 - Documents increasingly available electronically
 - Lots of unstructured full-text documents on the Web
- High cost of manual classification (1-2 / hour)
- Challenging research issue
Why automated classification?

- Information explosion
 - Documents increasingly available electronically
 - Lots of unstructured full-text documents on the Web
- High cost of manual classification (1-2 / hour)
- Challenging research issue
- Fun!
(Personal - NetLab)
1992 Automated classification of WAIS databases using 2 top levels of UDC
1993 Demonstrated at SIGWAIS/SIGNIDR III conference
1997 Automated classification of Engineering Web resources using Ei
2000 EU project DESIRE: toolkit (Matcher)
2003 EU project ALVIS: Matcher + Crawler => Focused Web crawler (Combine)
2007 PhD thesis: “Automated Subject Classification of Textual Documents in the Context of Web-based Hierarchical Browsing”, Koraljka Golub
2009 Vertical Search Engines Demo
Automated Classification technologies

- Machine learning methods
 - Statistical models (Bayes, SVM, ...)
 - ANN
- Information Retrieval methods
 - Clustering (no predefined categories)
- Library Science methods
 - String matching + Thesaurus
1. Background

2. SVM (Support Vector Machines)

3. String matching

4. Evaluation

5. Lessons learned

6. References
Developed by Vapnik 1992
• Developed by Vapnik 1992
• Classification for linear (and non-linear) problems
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Machine learning
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 "Kernels" handle non-linear problems (by mapping to linear case)
Machine learning
Data represented as n-dimensional vectors (vector space model)
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Machine learning
Data represented as n-dimensional vectors (vector space model)
Need a training set with positive and negative documents
SVM

- Developed by Vapnik 1992
- Classification for linear (and non-linear) problems
 - “Kernels” handle non-linear problems (by mapping to linear case)
- Machine learning
- Data represented as n-dimensional vectors (vector space model)
- Need a training set with positive and negative documents
- General classifier
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Machine learning
Data represented as n-dimensional vectors (vector space model)
Need a training set with positive and negative documents
General classifier
Decision: yes/no
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Machine learning
Data represented as n-dimensional vectors (vector space model)
Need a training set with **positive and negative** documents
General classifier
Decision: yes/no
Finds the optimal hyper-plane for linearly separable patterns
Developed by Vapnik 1992
Classification for linear (and non-linear) problems
 “Kernels” handle non-linear problems (by mapping to linear case)
Machine learning
Data represented as n-dimensional vectors (vector space model)
Need a training set with positive and negative documents
General classifier
Decision: yes/no
Finds the optimal hyper-plane for linearly separable patterns
Can be extended to multiclass/hierarchical classification
Efficiently handles $\sim 10\,000$ dimensions given that input vectors are sparse
Efficiently handles $\sim 10\ 000$ dimensions given that input vectors are sparse

Decision function specified by support vectors (from training examples)
Efficiently handles $\sim 10,000$ dimensions given that input vectors are sparse
Decision function specified by support vectors (from training examples)
SVM maximize the margin around the separating hyper-plane
Why SVM for text categorization?

Advantages

- “Most popular and effective method”
- High dimensionality input
- Uses all features - no feature selection
- Sound mathematical theory for optimal decision function
- Performs well when collection characteristics does not change
- Bag-Of-Words model - document vectors
- Fast once trained

Problems

- Requires training examples
- Language
- Depends on a relatively homogeneous collection
- Sensitive for selection of negative examples
- Error propagation for deep classification hierarchies
- One classifier per class
Why SVM for text categorization?

Advantages

- “Most popular and effective method”
- High dimensionality input
- Uses all features - no feature selection
- Sound mathematical theory for optimal decision function
- Performs well when collection characteristics does not change
- Bag-Of-Words model - document vectors
- Fast once trained

Problems

- Requires training examples
- Language
- Depends on a relatively homogeneous collection
- Sensitive for selection of negative examples
- Error propagation for deep classification hierarchies
- One classifier per class
1. Background

2. SVM (Support Vector Machines)

3. String matching

4. Evaluation

5. Lessons learned

6. References
Classification process

Document text

Configuration
Stop-words
Stemming

String Match

Score propagation
Cut-off values

Topic Definition

Term triplets
Term (word, phrase boolean), relevance, list of topic-classes

Topic-class hierarchy

List of topic-classes, relevance, matched terms
Classification process

Example term triplets
40: ALGOL @and programming language=723.1.1
15: CCTV=716.4
40: CAT scans=723.5
20: CAT scans=531, 801, 461.1
-10000: hotel=7
String matching

Thesauri based

- Reuse intellectual effort
Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
String matching

Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?

Relevance score:

\[
\text{Relevance score} = \sum_{\text{locations}} \left(\sum_{\text{terms}} \left(\text{hits}\left[\text{location}_j\right]\cdot\text{weight}\left[\text{term}_i\right]\cdot\text{weight}\left[\text{location}_j\right] \right) \right)
\]
or

\[
\text{Relevance score} = \sum_{\text{terms}} \left(\sum_{\text{matches}} \text{weight}\left[\text{term}_i\right]\cdot\log\left(k\cdot\text{position}\left[\text{match}_j\right]\right)\cdot\text{proximity}\left[\text{term}_i\left[\text{match}_j\right]\right] \right)
\]

Normalize with respect to document size
Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?
 - ... relevance: how many; where in the text (document structure)
String matching

Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?
 - ... relevance: how many; where in the text (document structure)

\[
\text{Relevance_score} = \sum_{\text{all locations}} \left(\sum_{\text{all terms}} \left(\text{hits}[\text{location}_j][\text{term}_i] \times \text{weight}[\text{term}_i] \times \text{weight}[\text{location}_j] \right) \right)
\]

Normalize with respect to document size
String matching

Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?
 - ... relevance: how many; where in the text (document structure)

Relevance_score =

$$\sum_{\text{all locations}} \left(\sum_{\text{all terms}} \left(\text{hits}[\text{location}_j][\text{term}_i] \times \text{weight}[\text{term}_i] \times \text{weight}[\text{location}_j] \right) \right)$$

or

$$\sum_{\text{all terms}} \left(\sum_{\text{all matches}} \frac{\text{weight}[\text{term}_i]}{\log(k \times \text{position}[\text{term}_i][\text{match}_j])} \right)$$

Normalize with respect to document size
String matching

Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?
 - ... relevance: how many; where in the text (document structure)

Relevance_score =

\[
\sum_{\text{all locations}} \left(\sum_{\text{all terms}} (\text{hits}[\text{location}_j][\text{term}_i] \ast \text{weight}[\text{term}_i] \ast \text{weight}[\text{location}_j]) \right)
\]

or

\[
\sum_{\text{all terms}} \left(\sum_{\text{all matches}} \frac{\text{weight}[\text{term}_i]}{\log(k \ast \text{position}[\text{term}_i][\text{match}_j]) \ast \text{proximity}[\text{term}_i][\text{match}_j]} \right)
\]

Normalize with respect to document size

A. Ardö, EIT, Lund University
Why String matching for text categorization?

Advantages

- Reuse intellectual effort
- Can take advantage of document structure
- Feature selection by thesaurus
- Language
- No training
- Deep hierarchies
- Multiclass classification
Why String matching for text categorization?

Advantages

- Reuse intellectual effort
- Can take advantage of document structure
- Feature selection by thesaurus
- Language
- No training
- Deep hierarchies
- Multiclass classification

Problems

- No context for topic terms
- Stopwords can cause trouble
- Relies on a good thesaurus
- No generalization
Outline

1. Background
2. SVM (Support Vector Machines)
3. String matching
4. Evaluation
5. Lessons learned
6. References
Evaluation challenge

Comparing human assigned classes to automated classification

- Collection policies
- Users vs indexers
- Inter- and intra-indexers consistency
- Availability of representative pre-classified collections
Evaluation challenge

Comparing human assigned classes to automated classification

- Collection policies
- Users vs indexers
- Inter- and intra-indexers consistency
- Availability of representative pre-classified collections

Hard to do good evaluations
Evaluation

- SVM
 - Most evaluations done in “lab-like environments”
 - Very good - 70 - 90 % correctness
 - Popular
Evaluation

- SVM
 - Most evaluations done in “lab-like environments”
 - Very good - 70 - 90 % correctness
 - Popular

- String matching
 - Few evaluations done
 - Good - 60 - 90 % correctness

Examples:

1: Precision for classification of Compendex bibliographic records:
 SVM 0.74 - 0.91
 String match 0.26 - 0.97

2: Depends on the hierarchical depth of the classification
 Correct to String match SVM
 3 levels 0.71p 0.61p
 2 levels 0.87p 0.81p
 top level p p
Evaluation

- **SVM**
 - Most evaluations done in “lab-like environments”
 - Very good - 70 - 90 % correctness
 - Popular

- **String matching**
 - Few evaluations done
 - Good - 60 - 90 % correctness

Examples:
1: Precision for classification of Compendex bibliographic records:
 - SVM 0.74 - 0.91
 - String match 0.26 - 0.97
Evaluation

- **SVM**
 - Most evaluations done in “lab-like environments”
 - Very good - 70 - 90 % correctness
 - Popular

- **String matching**
 - Few evaluations done
 - Good - 60 - 90 % correctness

Examples:

1: Precision for classification of Compendex bibliographic records:

- SVM: 0.74 - 0.91
- String match: 0.26 - 0.97

2: Depends on the hierarchical depth of the classification

<table>
<thead>
<tr>
<th>Correct to</th>
<th>String match</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 levels</td>
<td>0.71p</td>
<td>0.61p</td>
</tr>
<tr>
<td>2 levels</td>
<td>0.87p</td>
<td>0.81p</td>
</tr>
<tr>
<td>top level</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>
Outline

1. Background
2. SVM (Support Vector Machines)
3. String matching
4. Evaluation
5. Lessons learned
6. References
Lessons learned I

- Homogeneous collection
- Good training examples (both positive and negative)
- Shallow hierarchy

use SVM
Lessons learned I

- Homogeneous collection
- Good training examples (both positive and negative)
- Shallow hierarchy

use SVM

- Mixed collection
- Good thesaurus with subject terms
- Multiple classes in a hierarchy

use String match
Lessons learned I

<table>
<thead>
<tr>
<th>Homogeneous collection</th>
<th>Mixed collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good training examples (both positive and negative)</td>
<td>Good thesaurus with subject terms</td>
</tr>
<tr>
<td>Shallow hierarchy</td>
<td>Multiple classes in a hierarchy</td>
</tr>
</tbody>
</table>

use SVM

use String match

Parameters
Lessons learned I

Homogeneous collection
Good training examples (both positive and negative)
Shallow hierarchy

Mixed collection
Good thesaurus with subject terms
Multiple classes in a hierarchy

use SVM

use String match

Parameters

text preprocessing
document vector values
kernel
gamma, coef0, cost, degree,
nu, epsilon, shrinking, degree, ...

A. Ardö, EIT, Lund University
Lessons learned I

- Homogeneous collection
- Good training examples (both positive and negative)
- Shallow hierarchy

- Mixed collection
- Good thesaurus with subject terms
- Multiple classes in a hierarchy

use SVM

- text preprocessing
- document vector values
- kernel
- gamma, coef0, cost, degree, nu, epsilon, shrinking, degree, ...

use String match

- text preprocessing
- add synonyms
- word sense disambiguation
- word weights
- cut-off value

Parameters
Careful with text preprocessing (stopwords and stemming)
Careful with text preprocessing (stopwords and stemming)
Hard to do a good evaluation
Lessons learned II

- Careful with text preprocessing (stopwords and stemming)
- Hard to do a good evaluation
- Learn strengths and weaknesses
Careful with text preprocessing (stopwords and stemming)
Hard to do a good evaluation
Learn strengths and weaknesses
Experiment!
Lessons learned II

- Careful with text preprocessing (stopwords and stemming)
- Hard to do a good evaluation
- Learn strengths and weaknesses
- Experiment!
- There is no “fit all cases best” solution
Lessons learned II

- Careful with text preprocessing (stopwords and stemming)
- Hard to do a good evaluation
- Learn strengths and weaknesses
- Experiment!
- There is no “fit all cases best” solution
- Not perfect
Lessons learned II

- Careful with text preprocessing (stopwords and stemming)
- Hard to do a good evaluation
- Learn strengths and weaknesses
- Experiment!
- There is no “fit all cases best” solution
- Not perfect
 - ... but useful
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
5. Reclassify all documents
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
5. Reclassify all documents
6. Manually inspect results and update SVM training set
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
5. Reclassify all documents
6. Manually inspect results and update SVM training set
7. Go-to 3 until result good enough
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
5. Reclassify all documents
6. Manually inspect results and update SVM training set
7. Go-to 3 until result good enough
8. Production level service
Idea - compromise and use all

1. Start with a reasonable classification system and thesaurus
2. Collect documents and classify by String Matching
3. Use result to generate SVM training set
4. Train SVM classifier
5. Reclassify all documents
6. Manually inspect results and update SVM training set
7. Go-to 3 until result good enough
8. Production level service
1. Background
2. SVM (Support Vector Machines)
3. String matching
4. Evaluation
5. Lessons learned
6. References
This presentation:

http://combine.it.lth.se/UDCseminar2009/

Koraljka Golub PhD thesis: “Automated Subject Classification of Textual Documents in the Context of Web-based Hierarchical Browsing”

Combine focused crawler tools download: http://combine.it.lth.se/#downloads
documentation on automated classification:
http://combine.it.lth.se/documentation/DocMain/node6.html

Demonstrators (incl UDC classifiers):
http://dbkit05.eit.lth.se/exp/Demos/